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In order better to understand how dynamo systems saturate, we study the kinematic
dynamo properties of velocity fields that arise from nonlinearly saturated dynamos.
The technique is implemented by solving concurrently, in addition to the momentum
equation, two induction equations, one for the actual magnetic field and one for an
independent passive vector field. We apply this technique to two illustrative examples:
convectively driven turbulence and turbulence represented by a shell model. In all
cases we find that the velocity remains an efficient kinematic dynamo even after
nonlinear saturation occurs. We discuss the implications to the process of dynamo
saturation.

1. Introduction
The magnetization of a turbulent electrically conducting fluid is often conceptua-

lized as a two-step process. Initially, a weak seed field is amplified by the turbulent
motions. During this kinematic phase, the field is assumed to be so weak as to have
no dynamical effects on the turbulence. The fluid velocity is determined solely by
the external, non-magnetic forces and, from the point of view of the magnetic field
evolution, it can be considered as prescribed. If, in this phase, the turbulent amplitude
is stationary the average behaviour of the magnetic field is either one of exponential
growth or one of exponential decay (Vainshtein & Kichatinov 1986). However, it is
now commonly believed that provided the magnetic Reynolds number, which is the
non-dimensional measure of advection to diffusion, is high enough the magnetic field
will grow (Kazantsev 1968; Vainshtein & Kichatinov 1986; Boldyrev & Cattaneo
2004; Schekochihin et al 2004). With the exponential growth of the magnetic field
there will be a corresponding exponential growth of the magnetic forces, which will
eventually become comparable with those driving the turbulence. In this second
nonlinear phase the exponential growth of the magnetic field will become saturated,
and the magnetoturbulence will settle down to some stationary, well-defined level of
magnetization.

Clearly in this nonlinear phase the velocity field has been modified from its original
kinematic state. The question then arises as to the nature of this modification. Is
there an easily identifiable property of the velocity field that in the kinematic phase
leads to the exponential growth of the field whilst in the saturated state yields
a statistically stationary magnetic field? Discussions of dynamo saturation can be
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divided into three broad paradigms. The first is the equipartition argument that the
magnetic energy will grow until it is comparable with the kinetic energy. This is
a nice criterion, as it can be applied with great generality, without knowing much
about the details of the dynamo system; however it suffers from two main problems.
It is easy to construct examples in which the saturation magnetic energy greatly
exceeds the kinetic energy in the kinematic regime (see e.g. Stellmach & Hansen 2004)
and in which it is substantially lower (Brummell, Cattaneo & Tobias 2001). Even in
systems in which the energies are comparable, they may not be comparable at all scales
(Vainshtein & Cattaneo 1992). Furthermore this criterion gives the level of saturation –
but it does not give any hint of the mechanism for saturation. The second paradigm
is a marginal stability argument that the nonlinear effects of the magnetic field are
to bring the system back to marginality. This argument may be applicable to those
cases in which the magnetic Reynolds number, defined by Rm =U�/η, where η is the
magnetic diffusivity and U and � are a characteristic velocity and length scale, is close
to the critical value for dynamo action. However in many other cases this argument
is simply not supported by the available evidence. Many astrophysical dynamos can
easily be greatly supercritical, in the sense that Rm can exceed the critical value
for dynamo action by many orders of magnitude. This is the case that we wish to
consider in this paper, rather than the case in which Rm is close to critical. Since
the magnetic diffusivity is fixed, to relax the average state to a marginal one would
entail either a reduction of the velocity amplitude by several orders of magnitude
or a reduction in characteristic scales by several orders of magnitude or a mixture
of both. Such dramatic changes are simply not observed. To be fair, in some cases,
when dynamo saturation occurs the average velocity does decrease to some extent,
however, not by the huge amount required to bring Rm close to its critical value. The
third paradigm is more sophisticated and invokes some subtle modification of the
Lagrangian properties of the flow. It is well known that at high Rm dynamo action
requires the underlying flow to be chaotic over a substantial fraction of the fluid
volume (Vishik 1989; Klapper & Young 1995). Saturation could occur by suppressing
the level of chaos or greatly reducing the fraction of the volume over which the flow
is chaotic. In this scenario the saturated velocity differs from the kinematic velocity
insofar as it has lost its chaotic properties. Indeed there are cases in which this
reduction has been observed (Cattaneo, Hughes & Kim 1996). In this scenario both
the chaotic stretching and dissipation become negligible, but it does not entertain the
possibility that they both remain large but balance each other.

In the present paper we show that none of these arguments is satisfactory and that
the mechanism for saturation is extremely elusive. There may not be a property of the
velocity that can be simply calculated that would reveal whether the velocity is in the
kinematic stage or the nonlinear saturated state. We study a related problem that can
be precisely formulated, and while providing some useful insight into the saturation
process it is much simpler to analyse. We consider the turbulent velocity associated
with a saturated dynamo and ask to what extent this turbulent velocity acts as a
kinematic dynamo. More specifically, we compare the turbulent velocity driven by
large-scale forcing before and after the nonlinear saturation. We examine the ability
of the resulting velocity to amplify at an exponential rate a passive vector field that is
not necessarily everywhere aligned with the actual magnetic field but whose evolution
is determined by an induction equation with the same magnetic Reynolds number
as that for the magnetic field. Clearly, since both the passive field and the magnetic
field obey the same equation, if they are proportional to each other at one instant
they will remain proportional forever. If, on the other hand, the two fields are not
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everywhere aligned the passive field and magnetic field will have different evolutions.
What we wish to compare are their respective growth rates. In the kinematic regime
if the magnetic field grows exponentially, any passive field will eventually grow at
the same rate. In this regime, one can regard the dynamo growth rate as an average
property of the velocity, since it does not depend on which vector field it is applied
to. It is not immediately obvious whether this will continue to hold in the nonlinear
regime. By definition, in the saturated state the growth rate of the magnetic field is
zero. But is this true for other vector fields, satisfying the induction equation? If the
answer is yes, then the saturation property is an average property in the same sense
as above. If the answer is no, then the saturation property (by which we mean the
property of neither growing nor decaying on average) is specific to some restricted
class of vector fields, one of which is the actual magnetic field, and does not hold in
general. In this case the magnetic field will saturate, but the velocity field will remain
chaotic.

We apply this technique to two illustrative examples: convectively driven turbulence
and magnetohydrodynamic (MHD) turbulence represented by a shell model.
Convective turbulence is a natural choice; it is known to be an effective dynamo; its
properties can be carefully controlled; and it can be efficiently represented numerically.
Shell models, on the other hand, provide an idealization of a turbulent flow in which
all degrees of freedom at a given wavenumber are represented by a single (complex)
coefficient. They share some of the properties of the full systems, but lack their
geometrical complexity.

2. Convective dynamos: formulation
We consider dynamo action driven by (Boussinesq) convection in a rotating plane

layer. Using standard notations the evolution equations can be written as

(∂t − σ∇2)u + u · ∇u + σTa1/2ez × u = −∇p + J × B + σRa θez , (2.1)

(∂t − σ/σm∇2)B + u · ∇B = B · ∇u , (2.2)

(∂t − ∇2)θ + u · ∇θ = w , (2.3)

∇ · B = ∇ · u = 0 , (2.4)

where J = ∇ × B is the current density; w is the vertical velocity; and θ denotes the
temperature fluctuations relative to a linear background profile (e.g. Chandrasekhar
1961). In this non-dimensionalization magnetic fields are measured in units of the
Alfvén velocity. Four dimensionless numbers appear explicitly: the Rayleigh number
Ra , the Taylor number Ta and the kinetic and magnetic Prandtl numbers σ and σm.

In the horizontal directions we assume that all fields are periodic with periodicity
λ. In the vertical we consider standard illustrative boundary conditions for the
temperature, velocity and magnetic field, namely

θ =w = ∂zu = ∂zv = Bz = ∂zBx = ∂zBy = 0 at z = 0, 1. (2.5)

We supplement (2.1)–(2.4) by an extra equation for the evolution of a (solenoidal)
passive field Z that obeys the same induction equation (2.2) as B,

(∂t − σ/σm∇2)Z + u · ∇Z = Z · ∇u, ∇ · Z = 0, (2.6)

together with the same boundary conditions. We stress again here that Z is passive and
does not act back on u. This implies that whilst u and B satisfy an energy equation
(with a coupling term 〈B · (B · ∇u)〉 between the equations) there is no corresponding
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Figure 1. Convective dynamo time series. (a) Time series for the kinetic energy (solid line) and
5× magnetic energy (dashed line) showing the dynamo evolution to a saturated state. (b) Time
series for the magnetic energy (dashed line) and the energy of the passive field (dot-dashed
line); note that this is logarithmic to show the exponential growth of the passive field energy.

coupling between u and Z. Hence, as stated above, if B and Z are not initially aligned
they will have different evolutions. However the root mean square (r.m.s.) value of
the Z field could be stationary, decay or grow, and it it these dynamics we wish to
ascertain.

We solve (2.1)–(2.6) numerically by standard pseudo-spectral methods (see, for
example, Cattaneo, Emonet & Weiss 2003). For recent publications on convectively
driven dynamos we note, for example, the works of Stellmach & Hansen (2004) and
Cattaneo & Hughes (2006).

3. Convective dynamos: results
The convective model equations (2.1)–(2.6) were integrated for a wide range of

parameters; with varying degrees of supercriticality (as measured by Ra) and rotation
rates (as measured by Ta). For all cases, whether rotating or non-rotating, the results
were qualitatively similar, and so we focus here on describing the results for one
representative case, with Ta = 0 and Ra =100 000. The other parameters are set at
σ = 1.0, σm = 5.0 and λ= 3.0. Note that setting σm =5.0 makes the dynamo easy to
excite and has the tendency to generate magnetic fields on smaller length scales than
typical velocity scales.

Figure 1(a) shows the typical evolution of the convective dynamo system. We first
integrate the purely hydrodynamic system until a statistically steady convecting state,
which consists of a number of moderately turbulent convective eddies interacting
nonlinearly, is achieved. Once this hydrodynamic steady state is established (by t = 1)
a seed magnetic field Bs is introduced – in this stage the passive vector field Z
remains zero. There follows a typical dynamo evolution for a convective flow. The
seed magnetic field is amplified exponentially on an advective time scale (with a growth
rate σB ≈ 5.9), and the system rapidly saturates in a turbulent MHD state. Figure 1(a)
shows that the magnetic energy of the saturated state reaches approximately 7 % of
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(a) (b)

Figure 2. Density plots showing typical form of (a) the magnetic field and (b) the passive
field for the convective model. Shown are the x components of both fields at the level z ≈ 0.1.

the saturated kinetic energy, which is itself reduced slightly (of the order of 10 %)
from its kinematic value. It is the dynamo properties of this saturated velocity field
that is of interest.

To this end, we continue solving the equations for u and B, integrating the nonlinear
saturated state forward in time. At t ≈ 4.6 we introduce a random seed passive vector
field Zs into the linear equation (2.6). Figure 1(b) shows the evolution of the saturated
magnetic energy and the energy of the passive vector field as the calculation is then
continued. As expected the saturated magnetic energy remains statistically steady
throughout the evolution, but it is clear that the passive vector field is exponentially
amplified by the saturated velocity field; the saturated velocity field does indeed act
perfectly well as a dynamo! The growth rate here is σZ ≈ 5.3 <σB . In the set of
calculations we have performed for these convective dynamos, σZ is always less than
σB , sometimes by as much as 50 %. The ratio appears to depend on the parameters
of the system but not significantly on the initial conditions. We stress here that if the
initial passive vector field is not chosen to be random but aligned with the saturated
magnetic field – i.e. Zs = CB, with C a constant – then Z =CB for all times in the
subsequent evolution.

Figure 2 compares the typical spatial form of the saturated magnetic field B with
that of the exponentially growing passive field Z in the form of density plots. It is
clear that both fields have very similar spatial structures – both are concentrated
on small scales. This is perhaps not surprising, as they are advected by the same
velocity field at high magnetic Reynolds number, yet the passive field is growing
exponentially, whilst the magnetic field does not grow or decay on average. We stress
again that these results are typical and arise whether the system is moderately or
highly turbulent – or rotating or non-rotating.

4. Shell model dynamos: formulation
The results for the turbulent convective system described above seem counter-

intuitive, and there is the possibility that they may be model specific. We investigate
this possibility by considering the simplest possible models of hydromagnetic dynamo
action, namely shell models.

In the context of hydrodynamic turbulence, shell models have long been constructed
with the aim of reproducing the spectral properties of turbulence within a low-order
model (see e.g. Gledzer 1973; Yamada & Ohkitani 1987). More recently these shell
models have been extended to include the effects of magnetic fields, to examine both
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dynamo action and MHD turbulence (see e.g. Frick 1983; Plunian & Stepanov 2007).
These models are constructed specifically to reproduce certain conservation laws that
are inherent in the dissipation-free fluid and full MHD systems and therefore to
conserve ideal invariants.

Here we consider the dynamics of a relatively simple MHD shell model proposed
by Frick & Sokoloff (1998; hereinafter FS98), in order to discuss the kinematic
dynamo properties of a turbulent saturated dynamo. This local shell model conserves
ideal invariants and can be shown to reproduce some dynamics of two-dimensional
and three-dimensional MHD turbulence and dynamo action. As in the previous
sections, we consider the evolution of the velocity field (u), magnetic field (B) and
the passive vector field (Z). Following FS98 we consider the dynamics on a range of
spatial wavenumbers kn = k0λ

n, 0 � n � nmax and consider the complex variable Un(t)
as representative of all the modes of u in the shell with a wavenumber k such that
kn � k � kn+1. Similar representations for the magnetic fields and passive vector field
are given by the complex coefficients Bn(t) and Zn(t).

The basic shell model as introduced in FS98 describes the evolution of the velocity
coefficients (Un) and the magnetic field coefficients (Bn) via the system

U̇n + Re−1k2
nUn = ikn

{
(U ∗

n+1U
∗
n+2 − B∗

n+1B
∗
n+2) − ε

2
(U ∗

n−1U
∗
n+1 − B∗

n−1B
∗
n+1)

− (1 − ε)

4
(U ∗

n−2U
∗
n−1 − B∗

n−2B
∗
n−1)

}
+ fn, (4.1)

Ḃn + Rm−1k2
nBn = ikn

{
(1 − ε − εm)(U ∗

n+1B
∗
n+2 − B∗

n+1U
∗
n+2)

+
εm

2
(U ∗

n−1B
∗
n+1 − B∗

n−1U
∗
n+1) +

(1 − εm)

4

× (U ∗
n−2B

∗
n−1 − B∗

n−2U
∗
n−1)

}
, (4.2)

where ∗ represents the complex conjugate; Re and Rm are the non-dimensional
fluids and magnetic Reynolds numbers; and fn is a random forcing acting on only
a few shells near n= 0. Here ε and εm are parameters, which are set at ε = 1/2,
εm =1/3 in order to conserve the relevant invariants (i.e. the total energy, the cross-
helicity and the magnetic helicity) for non-dissipative three-dimensional dynamics (as
in FS98). The only other parameter of the model is the spacing of the shells in
wavenumber space (λ), which we set to λ= (

√
5+1)/2, which is the minimum spacing

allowed and is believed to lead to the most accurate results (see Plunian & Stepanov
2007).

This system of equations is able to describe regular dynamo action, and if the
variables Bn are set to zero, then the system reduces to the hydrodynamic Gledzer–
Ohkitani–Yamada (GOY) model. The dynamics of this system is described in detail
in FS98. Here, as in the last two sections, we focus on achieving a saturated dynamo,
where Un and Bn reach statistically steady states, and examine the dynamo properties
of the saturated velocity field Un. This is achieved by simultaneously solving (4.1) and
(4.2) together with the evolution equation for Zn, which, of course, is identical to (4.2).
It is the dynamics of this system of equations that will be investigated in the next
section.
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Figure 3. Shell model dynamo time series. (a) Time series for the kinetic energy (solid
line) and magnetic energy (dashed line) showing the dynamo evolution to a saturated state.
(b) Time series for the kinetic energy (solid line), magnetic energy (dashed line) and the energy
of the passive field (dot-dashed line).

5. Shell model dynamos: results
In this section, we repeat the procedure of § 3 for the shell model equations. Once

again we integrate these equations for a wide variety of parameters and obtain
qualitatively similar results each time. We present here a typical evolution, with
nmax = 19, corresponding to kmax ≈ 9349. We fix Re =Rm = 106 (so the magnetic
Prandtl number is unity) and choose fn = 10−4 (1 + i) δn6 (so that steady forcing is
applied at n= 6). This choice of steady forcing leads to the driving of flows with a
non-zero helicity; in shell models the helicity is defined as Hu =

∑
n 0.5(−1)nkn|Un|2.

The hydrodynamic equations are integrated until a statistically steady state is
achieved, as shown in figure 3(a). As for the convective model, this state has a
complicated temporal evolution about a well-defined mean. Once the hydrodynamic
solution has settled down, a small seed magnetic field is introduced and the dynamo
evolution followed. Once again the seed magnetic field grows exponentially before
saturating in a statistically steady MHD state (as shown in figure 3a). In this case
the dynamo is very efficient, and the magnetic energy saturates in equipartition with
the kinetic energy. Figure 4 shows the spectra for the velocity and magnetic fields
in the saturated state; it is clear from this that the shell model has saturated the
magnetic field so that it is in equipartition with the velocity field at each scale in the
nonlinear regime. Interestingly the magnetic field does have significant power at small
k in the saturated state for this choice of parameters, having been localized to larger
k in the kinematic regime.

With the magnetic field and velocity field in a statistically steady saturated state, a
weak passive seed field is added by setting Zn 	= 0. The evolution of this passive field is
compared with that of the saturated velocity and magnetic fields in figure 3(b). Once
again the passive field grows exponentially, somewhat surprisingly with a growth rate
larger than the kinematic growth rate for the magnetic field. Figure 4 also compares
the spectrum for the exponentially growing passive field at a representative time
with that for the saturated magnetic field. It is clear that, in this case, the growing
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Figure 4. Spectra for the saturated velocity field (solid line), saturated magnetic field
(dashed line) and kinematic passive field (dot-dashed line).

passive solution is more localized at high k than the saturated magnetic field. We
stress again that although the details of the solutions are parameter dependent (with
the relative growth rate of the passive field to that for the magnetic field being a
sensitive function of parameters) the exponential amplification of the passive vector
field remains a robust feature of the dynamics. However the precise dynamics of the
variables Zn are a function of the chaotic nature of the attractor in (Un, Bn) space:
we find cases in which the variables Zn have growth rates less than and greater than
Bn – and these will be presented in a subsequent paper.

6. Discussion
In this paper we have addressed the issue of how dynamos saturate and have

argued that this process is very subtle and not in concord with any of the previously
suggested theories. In particular we have shown that in the saturated state the velocity
remains a good kinematic dynamo for all passive vector fields that are not everywhere
aligned with the magnetic field. Remarkably this holds both for full MHD systems
(here we have analysed the specific case of convection) and for shell models. This
implies that the dynamo does not saturate either by relaxing the system to a state
close to marginality or by suppressing the chaotic stretching in the flow. Furthermore,
because this result applies equally to full MHD and shell models, it suggests that the
dynamo saturation relies on temporal rather than spatial correlations.

The origin of these correlations clearly comes from the Lorentz force term in the
momentum equation. This causes a special relationship (in the form of correlations)
between the velocity and the magnetic fields that is not shared by any other vector field
that only satisifies the induction equation. It is therefore apparent that the mechanism
by which saturation occurs cannot be captured by analysing the induction equation
alone.

This result also has some implications for the generation of large-scale fields. Thus
far we have discussed the kinematic dynamo properties of a saturated velocity, with
no particular distinction between large- and small-scale dynamo action. However
we could focus this question on the case in which the saturated velocity is helical,
or more generally lacks reflexional symmetry, and address the issue of large-scale
dynamo action. What would be the evolution of a large-scale passive field advected
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by the saturated helical velocity? There are only two possibilities. Either the passive
field is everywhere aligned with the actual magnetic field, in which case it will neither
grow nor decay, or it is not aligned with the actual field, in which case it will quickly
latch onto the fastest growing ‘eigenfunction’ and grow at the same rate as any other
perturbation, small or large (Boldyrev & Cattaneo 2004; Cattaneo & Hughes 2008).
In general this fastest growing eigenfunction may be dominated by the large or small
scales, but for the cases we considered the small scales dominated.

Finally we would like to note that any argument that attempts to describe the
saturation process (for dynamos of any scale) via the induction equation alone, for
example arguments that rely solely on the evolution of magnetic helicity, are likely
to be misleading. In our examples B and Z both satisfy the same equations for the
evolution of the integrated magnetic helicity, yet their behaviour is very different –
one grows exponentially, whilst the other is statistically steady. As noted above, any
argument for the level and mechanism of saturation must take into account the
correct solution of the momentum equation together with any constraints that arise
from the induction equation.
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